Development of hierarchical intelligent robot control for manipulation of flexible object in sewing (Koustoumbardis, 2014)

The clothing industry, even today, is an industry where automation is partly almost nonexistent and generally in their infancy stages. A large part of the production line is the part in which pieces of fabrics are sewn using a sewing machine. The sewing process, while being the largest in duration and the most important to the final quality of the cloths, remains almost entirely one handiwork. The specifics of fabrics like: their very little bending resistance, their large deformations, their unpredictable static / dynamic behavior, their anisotropic and non-linear nature and heterogeneity are the main factors of acute difficulties in their handling. The robotized sewing of fabrics is a relatively new research field but it is also an extremely complex problem, where few researchers have tried to investigate it. Right now, as far as can be known, only three research centers in international level are involved this field, while one of them is the Robotics Group of the University of Patras.

The aim of this thesis is to develop a flexible system which incorporates all those intelligent features in order to help automate robotic sewing of fabrics. This objective is based on computational intelligence methods, in approaches inspired by the way a human works and finally in the qualitative management of the knowledge/data that involve uncertainties. Simultaneously, the sewing control is achieved without using analytical models of both the fabrics and process. The coordination, of all of the previous mentioned, is achieved by a flexible hierarchical intelligent control system of the sewing process.

This thesis developed a set of new set of methods for automated sewing of fabrics using an industrial robot, equipped with a force sensor, and a conventional sewing machine. The novel approach, which composes the main framework of this thesis, consists of a hierarchical system of estimations, decisions and process control of the sewing task.

It is a systematic study, of recording and evaluating all the fabric handling tasks before and during the sewing process, according to the necessary requirements in sensor systems and control strategies. An original database and an expert system incorporating all this prior knowledge and experience is developed.

The idea of ​​applying methods of computational intelligence to the scientific field of sewing fabrics is presented. Also, the application of intelligent control methods, for stretching the fabrics during the sewing, which is based on neural networks while using qualitative assessment of the properties and characteristics of fabrics, is presented. Therefore, the concept of using linguistic variables for the qualitative description of the properties of fabrics, is introduced. In this context, it is the first time where the concept of the "extensibility" of a fabric is expressed quantitatively as a percentage. This is an essential and determining property of a fabric that should be taken into account during the sewing process.

Also, the development of a new method for the automated experimental determination of "extensibility" of fabrics is described. This original approach has been applied to single and double layers of fabrics, while the tensile experiments are ‘intelligently’ incorporated into the same sewing machine and just before the sewing process.

A fuzzy system for determining the desired tension for each of the fabrics is presented. This system is based on a qualitative assessment of "extensibility" of each fabric and it is initialized by the experience of the experts and the fuzzy implication they make between "extensibility" and desired tension.

A new method to control the tension of the fabric during the sewing is developed. A feedforward neural controller, to control the robotic gripper to maintain the tension of the fabric according to the respective desired, has been used.

Additionally, an expansion of the proposed approach is presented, for the case of the neuro-control of the tension, which showed the controller’s ability of generalization to other similar tasks. Also, new research areas that have been opened in the field of human-robot cooperation for handling non-rigid and very flexible objects are stated.

Finally, there is presented a systematic experimental robotic execution of seams in a wide variety of both single and double layers of fabrics, while the, produced by the robot, seams are compared with the seams produced by the experts. Through experimental phase and the results of the stitched fabrics it is highlighted the desired flexibility of the system and its satisfactory response in a wide variety of fabrics.